Summary of "FISIOLOGIA Clase3: Potencial de Membrana, Ecuacion de Nernst y Goldman."

Summary of “FISIOLOGIA Clase3: Potencial de Membrana, Ecuacion de Nernst y Goldman”


Main Ideas and Concepts

Membrane Potential Basics

Chemical and Electrical Gradients

Diffusion Potential and Equilibrium

Nernst Equation

[ E = \pm 61 \times \log \left(\frac{[\text{ion outside}]}{[\text{ion inside}]}\right) ]

Goldman Equation (Goldman-Hodgkin-Katz Equation)

[ E_m = -61 \times \log \frac{(P_{Na} \times [Na^+]{in}) + (P_K \times [K^+] \times [Cl^-]}) + (P_{Cl{out})}{(P \times [Na^+]{out}) + (P_K \times [K^+] ]}) + (P_{Cl} \times [Cl^-]_{in})

Contributions to Resting Membrane Potential

Physiological Importance


Methodology / Step-by-Step Instructions

Calculating Ion Equilibrium Potential Using Nernst Equation

  1. Identify ion concentrations inside and outside the cell.
  2. Use the formula:

[ E = \pm 61 \times \log \left(\frac{[\text{ion outside}]}{[\text{ion inside}]}\right) ]

  1. Use the negative sign for cations.
  2. Calculate the logarithm of the concentration ratio.
  3. Multiply by 61 (a constant derived from temperature, charge, and Faraday constant).
  4. Interpret the result as the voltage at which ion movement stops.

Calculating Resting Membrane Potential Using Goldman Equation

  1. Gather concentrations of Na⁺, K⁺, and Cl⁻ inside and outside the cell.
  2. Determine membrane permeability for each ion (K⁺: 1, Na⁺: 0.05, Cl⁻: 0.45).
  3. Apply the Goldman formula:

[ E_m = -61 \times \log \frac{(P_{Na} \times [Na^+]{in}) + (P_K \times [K^+] \times [Cl^-]}) + (P_{Cl{out})}{(P \times [Na^+]{out}) + (P_K \times [K^+] ]}) + (P_{Cl} \times [Cl^-]_{in})

  1. Calculate numerator and denominator separately.
  2. Divide numerator by denominator.
  3. Take the logarithm of the result.
  4. Multiply by -61 to get membrane potential in mV.

Speakers / Sources Featured


This summary captures the key physiological concepts about membrane potential, the role of ion gradients, and the mathematical tools (Nernst and Goldman equations) used to quantify these electrical phenomena in cells.

Category ?

Educational

Share this summary

Featured Products

Video